Spillover Sites on a 19% Ni/Al₂O₃ Catalyst

BISHWAJIT SEN AND JOHN L. FALCONER

Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424

Received October 21, 1988; revised January 17, 1989

Two distinct methanation sites are clearly identified on a 19% Ni/Al₂O₃ catalyst by temperatureprogrammed reaction (TPR) employing isotope labeling. The two sites, which are present after reduction at 975 K, are due to CO adsorption on Ni crystallites and CO and H spillover onto the Al₂O₃ support. The concentration of sites on the support is 250 μ mol/g Al₂O₃ (5 × 10¹³ molecules/ cm²), which is the same value measured for a 5.1% Ni/Al₂O₃ catalyst and for a 1.0% Ru/Al₂O₃ catalyst. Temperature-programmed desorption suggests that the CO and H on the Al₂O₃ are in the form of a H–CO complex. The formation of this complex is an activated process, which is related to the activated adsorption of H₂. The H₂ that adsorbs between 300 and 385 K is responsible for this spillover process onto the Al₂O₃. Isotope labeling and TPR were used to verify that a H–CO complex does not form on Ni/SiO₂ catalysts. Carbon monoxide adsorption on Ni/SiO₂ was not activated and only one methanation site was seen. 1989 Academic Press, Inc.

INTRODUCTION

On Ni/Al₂O₃ catalysts, two sites for CO methanation have been observed (1-3) by the presence of two CH₄ peaks during temperature-programmed reaction (TPR). Glugla *et al.* (3, 4) attributed the two distinct peaks on a 5.1% Ni/Al₂O₃ catalyst to CO adsorbed on Ni metal and CO adsorbed, as a H-CO complex, on the Al₂O₃ support. Carbon monoxide was found to adsorb first on the Ni and then spillover onto the Al₂O₃ in an activated process that required H_2 . That is, both CO and H spilled over onto the Al₂O₃. The resulting complex had the stoichiometry of a CH₃O species. Recent studies on a physical mixture of Al₂O₃ and a 19% Ni/Al₂O₃ catalyst provided direct evidence that the H-CO complex was on the Al_2O_3 surface (5).

Though the methanation activities of the two sites on 5.1% Ni/Al₂O₃ were quite different (3), on a 19% Ni/Al₂O₃ catalyst the two CH₄ peaks overlapped significantly, and their presence was only detected by observing the difference in TPR spectra for adsorption in He and adsorption in H₂ (6). Indeed, in an earlier study on a 15% Ni/Al₂O₃ catalyst (2), only one broad CH₄ peak appeared to be present.

Some of the objectives of the present study were to show directly with isotope labeling that two distinct CH₄ peaks are present on a high Ni loading catalyst, to determine how the spillover rate depends on Ni loading, and to determine if the same type of H-CO complex forms as seen on 5.1% Ni/Al₂O₃. A 19% Ni/Al₂O₃ catalyst is more reduced than a 5.1% Ni/Al₂O₃ catalyst, and thus the role of unreduced Ni can be clarified. Moreover, reduction was carried out at 975 K to obtain almost complete reduction. Previous studies have attributed one of the CH₄ peaks in TPR to CO adsorbed on isolated Ni (1) or on nickel aluminate (7). If the complexes are on the Al_2O_3 , then the concentration of H-CO complexes at saturation should be proportional to the Al_2O_3 surface area and not the Ni surface area; a comparison of the 19% Ni/Al₂O₃ catalyst to the 5.1% Ni/Al₂O₃ catalyst should allow this to be determined. In addition, the role of H_2 in the spillover process was studied on the 19% Ni/Al₂O₃ catalyst.

The two CH₄ peaks on 19% Ni/Al₂O₃ overlap because their activities are similar, and thus the TPR spectra for 19% Ni/Al₂O₃ were similar to those seen for Ni/SiO₂ catalysts. Therefore, we examined two Ni/SiO₂

catalysts (that differ in metal loading) by TPR employing isotope labeling to determine if the same spillover process occurred on Ni/SiO₂, but was not detected because of overlapping peaks. In addition to TPR with isotope labeling, temperature-programmed desorption (TPD) of coadsorbed CO and H₂ was also performed on the Ni/SiO₂ catalysts to determine if a H–CO complex was present. The results presented here show that two sites are present on the 19% Ni/Al₂O₃ catalyst but only one site is present on Ni/SiO₂ catalysts. The CO spillover process is shown to occur onto Al₂O₃ but not onto SiO₂ surfaces.

EXPERIMENTAL

TPR of adsorbed CO in flowing H_2 was used to study a 19% Ni/Al₂O₃ catalyst and two Ni/SiO₂ catalysts. Carbon isotopes of CO allowed individual reaction sites to be characterized. TPD was used in which CO and H_2 were coadsorbed on the catalyst at elevated temperatures.

Temperature-Programmed Reaction

A detailed description of the experimental apparatus is given elsewhere (8, 9). The passivated catalyst (100 mg) was reduced in pure H₂ (98 standard cm³/min) for 2 h at 775 K prior to the initial TPR. For subsequent experiments the catalyst was held in flowing H₂ at 775 K for either 15 min or 1 h. It was then cooled in H_2 and held at either 300 or 385 K while 10% CO/He was pulsed over the catalyst. A uniform pulsing procedure (one 0.5-cm³ pulse every 30 s) was followed for all experiments. The number of pulses was varied to examine the effect of initial CO surface coverage on the CH₄ peak temperature and to confirm that the catalyst was saturated. Following CO adsorption, the catalyst was subjected to a linear temperature ramp (1 K/s) under flowing H_2 to 775 K while continuously monitoring mass signals at 15 (CH₄), 18, 28, and 44 with the mass spectrometer. The mass 28 signal was corrected for CO₂ cracking. For a few experiments, the 19% Ni/Al₂O₃ catalyst was

also reduced for 2 h at 975 K to ensure complete reduction of the Ni. However, unless indicated otherwise, data to be reported were obtained on catalysts reduced only at 775 K.

Temperature-Programmed Desorption

For TPD, the reduction procedure was the same as that for TPR. After reduction in H_2 at 775 K, however, the carrier gas was switched to He and the catalyst held in He for 5 min before cooling. The catalyst was then cooled in He to a given temperature, the carrier gas was switched back to H_2 , and cooling was continued in H_2 . The adsorbate gas, 10% CO/He, was then pulsed into the carrier gas (either H_2 or He flow) for 1 h (1 pulse/30 s) at 385 or 300 K. The catalyst was then cooled to 300 K (if at 385 K), the carrier gas was switched to He (if not already in He), and the catalyst was held in He at 300 K for 10-30 min. The TPD experiment was carried out for the coadsorbed CO and H₂ by heating the catalyst to 775 K in He at 1 K/s. Desorption and reaction products for mass signals at 2, 15, 18, 28, and 44 were monitored. Note that in all cases, the reactor was rapidly cooled by flowing compressed air over the outside of the reactor.

Isotope Labeling with Interrupted TPR

By adsorbing ¹²CO on one site and ¹³CO on the other, Glugla *et al.* (3) separated the two distinct methanation sites during TPR on a 5.1% Ni/Al₂O₃ catalyst. A similar procedure was used here for TPR on the 19% Ni/Al₂O₃ catalyst. At 385 K, ¹²CO was adsorbed to saturation coverage in H₂ flow, and 10 more pulses of ¹²CO were injected at 300 K. Following this, a fraction of the adsorbed ¹²CO was reacted off by heating the catalyst in H_2 at 1 K/s. Heating was stopped while CH₄ was still forming, and the catalyst was cooled to 300 K in H₂. This will be referred to as interrupted TPR. The interruption temperature was varied. At 300 K, 20 pulses (1 pulse/30 s) of 13 CO were then injected into the He carrier gas in

order to adsorb ¹³CO on the sites from which ¹²CO had been removed. A complete TPR was then carried out to 775 K, at a heating rate of 1 K/s, while continuously monitoring the mass signals at 15 (12 CH₄), 17 (13 CH₄), 28 (12 CO), and 29 (13 CO). Similar procedures, in which the interruption temperature and the number of pulses of ¹³CO were varied, were used for the Ni/ SiO₂ catalysts.

For a few experiments, isotope exchange was used instead of interrupted TPR to replace ¹²CO by ¹³CO. The same adsorption procedure was used for ¹²CO, but instead of interrupted reaction to remove ¹²CO from one of the sites, ¹³CO was pulsed over the saturated catalyst at 300 K and the ¹²CO on one of the sites was displaced by ¹³CO. The experiments on Ni/SiO₂ demonstrate that ¹³CO displaces ¹²CO from Ni at 300 K.

Catalyst Preparation

A 19% Ni/Al₂O₃ catalyst was prepared by impregnation of 60- to 80-mesh Al₂O₃ (Kaiser A-201) to incipient wetness with an aqueous solution of Ni(NO₃)₂ · 6H₂O using procedures described previously (1). After being air-dried at 300 K for 24 h, the catalyst was reduced in H₂ at 503 K for 2 h and at 775 K for 12 h, and then passivated at 300 K with 2% O₂ in He. The A-201 Al₂O₃ was specified by the manufacturer to have a BET surface area of 315 m²/g and impurities of Na₂O (0.35%), FeO (0.02%), and SiO₂ (0.02%). Two Ni/SiO₂ catalysts (5% and 9.2 wt% Ni) were prepared by the same procedure. The passivated catalysts were treated for an additional 2 h at 775 K (Ni/SiO₂, Ni/Al₂O₃) or 975 K (Ni/Al₂O₃) in the TPR apparatus. The Ni weight loadings were determined by atomic absorption.

RESULTS

Nickel/Alumina Catalyst

Temperature-programmed reaction. The hydrogenation of adsorbed CO on the 19% Ni/Al₂O₂ catalyst was studied as a function of adsorption temperature and CO exposure. Since most of the adsorbed CO reacted to form CH_4 during heating in H_2 , only the CH₄ and unreacted CO spectra will be discussed. At 300 K in H_2 flow, the surface was essentially saturated with CO after 76 pulses; an increase to 272 pulses only increased the amount of CH₄ by 15% (Table 1). The amount of unreacted CO also increased by 15%. The amount of CO_2 formed was negligible. The CH₄ formed in what will be shown to be two overlapping peaks, with a overall peak maximum at 492 K (Fig. 1). For adsorption at 300 K, most of the unreacted CO desorbed before the methanation rate was significant. As shown in Fig. 2, the unreacted CO desorbed in peaks at 368 and 450 K. As exposure increased, the peak at 450 K increased and that at 368 K decreased. This CO desorption is different from that observed on low loading Ni/Al₂O₃ (1), for which only one CO peak was seen $(395 \pm 3 \text{ K})$.

More CO adsorbed at 385 than at 300 K

Adsorption	Number of	CH₄ peak	CH₄ amount	Unreacted CO (µmol/g Ni)	
temperature (K)	pulses	temperature (K)	(µmol/g Ni)		
300	76	492ª	1370	70	
300	272	492 ^a	1610	90	
385	120	494	2340	330	
385	240	500	1990	450	
385,300	120,120	500	1980	330	

TABLE 1 TPR of CO Adsorbed on 19% Ni/Al₂O₃

" Low-temperature shoulder seen.

FIG. 1. Methane TPR spectra for CO adsorbed in H_2 on 19% Ni/Al₂O₃: (a) 76 pulses of CO at 300 K; (b) 272 pulses at 300 K; (c) 240 pulses at 385 K.

(Fig. 1), but after this long exposure (240 pulses at 385 K), the amount of CO adsorbed for subsequent TPR experiments decreased. Apparently some Ni was removed as nickel carbonyl at these conditions (10). Subsequently, the amount of CH₄ formed was the same (within 1%) for preadsorption of 120 or 240 pulses; the surface is apparently saturated after 120 pulses of CO at 385 K. Twenty percent more CH₄ formed for adsorption at 385 than at 300 K, and the overall peak maximum increased by 8 K to 500 K (Table 1). As the adsorption temperature increased from 300 to 385 K, much more unreacted CO desorbed (Fig. 2). For adsorption at 385 K, approximately 16% of the CO desorbed unreacted, but less than 1% of the CO desorbed as CO₂.

To investigate whether incomplete reduction of the Ni is responsible for the additional adsorption at 385 K and for the two peaks in TPR, the 19% Ni/Al₂O₃ catalyst was reduced for an additional 2 h at 975 K. For CO adsorption at 300 K, two distinct CH₄ peaks were still observed during TPR, but the total amount of CH₄ produced had decreased significantly. Figure 3a shows the TPR spectra for CO adsorption at 300 K in He instead of H₂. The amount of CH_4 (340 μ mol/g Ni) was less than half the amount of CH₄ seen for CO adsorption in He following reduction at 775 K (5). Less CO adsorbs in He than in $H_2(1, 6)$, but reduction at 975 K significantly reduced the amount of CO that adsorbs in He. The peak temperature of the low-temperature peak was 462 K and it did not change with reduction temperature. The peak temperature of the higher peak was 536 K for reduction at 975 K. The higher temperature peak was below 500 K for reduction at 775 K.

Much more CO adsorbed at 385 K than at 300 K for the catalyst reduced at 975 K, and two overlapping peaks (Fig. 3b) formed that were similar to those reported for reduction at 775 K. The total amount of CH_4 was smaller, however, than for the catalyst reduced only at 775 K.

FIG. 2. Unreacted CO observed during TPR for CO adsorbed in H_2 on 19% Ni/Al₂O₃; (a) 76 pulses of CO at 300 K; (b) 272 pulses at 300 K; (c) 240 pulses at 385 K.

FIG. 3. Methane TPR spectra for CO adsorbed on 19% Ni/Al₂O₃ after reduction at 975 K for 2 h: (a) CO adsorbed in He at 300 K; (b) CO adsorbed in H₂ at 385 K.

Interrupted reaction and isotopic labeling. The CH₄ product in Fig. 1 was shown to consist of two distinct CH₄ peaks by labeling the site responsible for the high-temperature peak with ¹²CO and that responsible for the low-temperature peak with ¹³CO. To accomplish this labeling, ¹²CO was adsorbed at 385 K in H₂, and the catalyst was then heated in H₂ to remove some ¹²CO as ¹²CH₄. Thus, heating was stopped (interrupted TPR) after a fraction of the ¹²CO had reacted. The catalyst was then cooled to 300 K and exposed to ¹³CO to fill the empty sites created by the interrupted TPR. The subsequent TPR (Fig. 4) exhibited two peaks: ${}^{13}CH_4$ at 470 ± 2 K and ¹²CH₄ at 487 \pm 4 K. The total amount of methane formed $({}^{13}CH_4 + {}^{12}CH_4)$ was the same as that seen for TPR following ¹²CO adsorption at 385 K. These experiments were carried out at three interruption temperatures with similar results. Two distinct peaks were obtained in each case. The amounts in the ¹²CH₄ and ¹³CH₄ peaks depended on interruption temperature because ${}^{12}CH_4$ was present in both the lowand high-temperature peaks, as is evident from Fig. 4. The mass 17 signal above 500 K in Fig. 4 was due mostly to cracking of the H₂O product. Water readsorbs on Al₂O₃ and then desorbs over a wide temperature range starting above 500 K.

As a result of similar experiments on Ni/SiO₂ catalysts (described below), a modified form of the isotopic labeling experiment was carried out for the 19% Ni/Al₂O₃ catalyst sample that was reduced at 975 K. As before, ¹²CO was adsorbed to saturation at 385 K in H₂, and the catalyst was then cooled to 300 K. Instead of carrying out an interrupted TPR, however, the catalyst was then exposed to ¹³CO at 300 K. Much of the ¹²CO that was located on the Ni readily exchanged with ¹³CO at 300 K, so that the resulting TPR yielded two peaks, as shown in Fig. 5. The two CH₄ peaks are resolved better than those in Fig.

FIG. 4. Methane (${}^{12}CH_4$ and ${}^{13}CH_4$) TPR spectra from 19% Ni/Al₂O₃. The ${}^{12}CO$ was adsorbed in H₂ at 385 K and the catalyst was then heated to 485 K to remove some ${}^{12}CO$. The catalyst was cooled in H₂ and ${}^{13}CO$ was adsorbed at 300 K. Note that the mass 17 signal above 500 K is mostly due to cracking of the H₂O product.

FIG. 5. Methane (${}^{12}CH_4$ and ${}^{13}CH_4$) TPR spectra from 19% Ni/Al₂O₃ after reduction at 975 K for 2 h. The ${}^{12}CO$ was adsorbed at 385 K and the catalyst was then exposed to ${}^{13}CO$ at 300 K. The ${}^{13}CH_4$ curve is displaced vertically.

4 because the higher reduction temperature results in a bigger difference in the methanation activities of the two sites. As shown by the shoulder on the $^{12}CH_4$ peak, not all the ^{12}CO on the Ni exchanged at 300 K during the short exposure to ^{13}CO .

Temperature-programmed desorption. Glugla et al. (4) detected a H-CO complex on a 5.1% Ni/Al₂O₃ catalyst following CO adsorption in H₂ at 385 K. In those experiments, the catalyst was cooled from 775 K in H₂ before adsorbing CO. The presence of a similar H-CO complex was detected in the present experiments, and the bonding of the surface hydrogen needed to form the complex was studied by varying the maximum temperature at which the catalyst was exposed to H₂ before adsorbing CO. To do this, the catalyst was reduced in H_2 at 775 K, the carrier gas switched to He before cooling, and the carrier gas then switched back to H_2 at either 548 or 300 K. In one experiment the catalyst was cooled in H₂ from 775 K, using the same procedure as Glugla et al. (4). For each of these experiments, CO was adsorbed in H_2 at 385 K.

For CO and H_2 coadsorbed at 385 K, large amounts of CO and H_2 (Table 2) desorbed together in a narrow, well-defined peak at 500 K. A significant amount of CO₂ formed (much more than seen for the 5.1% Ni/Al₂O₃ catalyst (4)) and a small amount of CH₄ was also seen. Figure 6 shows the TPD spectra obtained when the catalyst was cooled from 550 K in H₂ before CO was adsorbed. The total H/CO ratio is 3.8. Similar results were obtained when the carrier gas flow was switched to H₂ at 300 K and CO was then adsorbed at 385 K in H₂; the total H/CO ratio in the peak at 500 K was 3.6.

When the catalyst was cooled in H_2 from

Temperature (K) for H_2 switch ^a	Adsorption temperature (K)	Total amount desorbed (µmol/g Ni)		
		H ₂	СО	CO ₂
775	385	2670	1360	590
550	385	2360	1240	570
300	385	2370	1305	560
775	300		400	370
385	300	—	330	370
300	300		260	330
Not switched	300 (He)	_	190	330

TABLE 2TPD for CO and H2 Adsorbed on 19% Ni/Al2O3

^{*a*} After reduction in H_2 , the catalyst was cooled in He to this temperature and flow was then switched back to H_2 .

FIG. 6. Temperature-programmed desorption spectra of CO, H_2 , CO₂, and CH₄ for CO and H_2 coadsorbed on 19% Ni/Al₂O₃. Following reduction, the catalyst was cooled in He from 775 to 550 K and in H_2 at from 550 to 300 K, and the CO was adsorbed in H_2 at 385 K.

775 K before CO was adsorbed, an additional H₂ desorption peak was seen at 425 K (Fig. 7). This state was not present on a 5.1% Ni/Al₂O₃ catalyst (4). This additional H₂ adsorption state apparently affected CO desorption, which did not begin until 450 K; for cooling from 550 K (Fig. 6), CO desorption began at 350 K. The H/CO ratio for the peaks at 500 K in Fig. 7 could not be measured because of the overlapping H₂ peaks. An estimate of 3.4 was obtained from the ratio of peak amplitudes, but this estimate assumes the curve shapes are identical.

Similar TPD results were obtained for the 19% Ni/Al₂O₃ catalyst that was reduced at 975 K. The amount of CO that adsorbed in He was less than half of that seen for the catalyst reduced at 775 K, but adsorption at 385 K in H₂ dramatically increased the amounts of adsorbed CO and H₂. The simultaneous desorption of CO and H₂ with H/CO ratios near 3 was also seen, and the peaks were at higher temperatures (521 \pm 3 K) than for the catalyst reduced at 775 K.

Temperature-programmed desorption of coadsorbed CO and H₂ was also performed, on the 19% Ni/Al₂O₃ catalyst reduced at 775 K, for CO adsorbed in the presence of H_2 at 300 K for three conditions: (a) cooling in H_2 from 775 to 300 K; (b) cooling in H_2 from 385 to 300 K; and, (c) exposing the catalyst to H_2 only at 300 K. As the temperature at which the catalyst was exposed to H_2 increased, the amount of CO that desorbed increased (Table 2). For CO adsorption in He at 300 K, half as much CO desorbed as that seen for CO adsorption at 300 K after cooling in H₂ from 775 K (Table 2). Simultaneous CO and H_2 desorptions were not observed for CO adsorbed in He. When CO was adsorbed in H_2 at 300 K, after cooling in He to 300 K, the desorption spectrum was almost identical to that obtained for CO adsorption in He. Only H₂ preadsorbed at 385 K or higher was able to enhance CO adsorption.

Nickel/Silica Catalysts

Similar TPD and TPR experiments were carried out on 5 and 9.2% Ni/SiO₂ cata-

FIG. 7. Temperature-programmed desorption spectra of CO, H_2 , CO₂, and CH₄ for CO and H_2 coadsorbed on 19% Ni/Al₂O₃. The catalyst was cooled in H_2 following reduction at 775 K, and the CO was adsorbed in H_2 at 385 K.

FIG. 8. Methane TPR spectra for CO adsorbed in H_2 on 5% Ni/SiO₂: (a) 20 pulses of CO at 300 K; (b) 100 pulses of CO at 300 K; (c) 100 pulses of CO at 385 K.

lysts. Data will be presented for the 5% Ni/SiO₂ catalyst, but similar results were obtained for the 9.2% Ni/SiO₂ catalyst. As shown in Fig. 8, in contrast to the Ni/Al₂O₃ catalysts, the amount of CH₄ that formed during TPR did not increase as CO was adsorbed at a higher temperature. The only difference seen was a slight increase in the CH₄ signal amplitude between 400 and 450 K.

Isotopes were used to determine if the TPR spectra in Fig. 8 consisted of two overlapping CH₄ peaks. The catalyst was first saturated with ¹²CO (40 pulses) in H₂ flow at 385 K. Interrupted TPR was then carried out, for interruption temperatures from 393 to 493 K, and ¹³CO (7 pulses) was adsorbed in H₂ at 300 K. The resulting TPR (shown in Fig. 9 for an interruption temperature of 403 K) was similar. Mostly ¹³CH₄ formed because ¹²CO on Ni readily exchanged with ¹³CO in the gas phase. The peak temperatures for ¹²CH₄ and ¹³CH₄ were the same; two CH₄ peaks were not present.

Temperature-programmed desorption of

coadsorbed H₂ and CO on both Ni/SiO₂ catalysts was also carried out for adsorptions at 300 and 385 K. The amounts of adsorbed CO and H₂ did not change with adsorption temperature, and the TPD spectra of each were essentially identical to those obtained for individual adsorptions. The CO and H₂ did not desorb in simultaneous peaks, and much more CO than H₂ was present on the surface. A large amount of CO₂ also desorbed. On the 5% Ni/SiO₂ catalyst, 200 μ mol of CO/g Ni and 265 μ mol of CO₂/g Ni desorbed.

DISCUSSION

Methane formed in a broad peak during TPR of adsorbed CO on the 19% Ni/Al₂O₃ catalyst, but isotope labeling shows clearly that two distinct peaks are present (Figs. 4 and 5). For lower Ni loadings, the two peaks have sufficiently different activities that they can be distinguished without isotopes (1-3), but isotopes verified that the two sites were distinct and also allowed the

FIG. 9. Methane ($^{12}CH_4$ and $^{13}CH_4$) spectra from 5% Ni/SiO₂. The ^{12}CO (40 pulses) was adsorbed in H₂ flow at 385 K prior to an interrupted TPR to 403 K. After cooling to 300 K, the catalyst was exposed to ^{13}CO (7 pulses) in H₂ at 300 K before a subsequent TPR.

transfer between sites to be studied (3). As discussed previously, the two CH₄ peaks appear to be due to CO adsorbed on Ni crystallites (the low-temperature peak) and to CO adsorbed on the Al₂O₃ support (the high-temperature peak). For a 19% Ni/ Al₂O₃ catalyst reduced at 975 K, almost all of the Ni is reduced (11, 12), but the high-temperature CH₄ peak is present, and thus unreduced Ni is not needed for the two CH₄ peaks to exist.

On a 5.1% Ni/Al₂O₃ catalyst, CO appeared to adsorb only on Ni in He flow at 300 K, and then spillover to the Al₂O₃ support during TPR. This transfer required H₂ and was activated. At 385 K in H₂, all the CO on the Ni could be transferred to the Al₂O₃ catalyst reduced at 975 K, almost all of the Ni is reduced (11, 12), but the high-temperature CH₄ peak is present, and thus unreduced Ni is not needed for the two CH₄ peaks to exist.

Similar processes appear to occur on the 19% Ni/Al₂O₃ catalyst since both the TPR and the TPD (of coadsorbed CO and H₂) are qualitatively similar to those on the 5.1% Ni/Al₂O₃ catalyst. However, the relative amounts of each site differ. The CO on the Al₂O₃ sites is hydrogenated more rapidly on the 19% Ni/Al₂O₃ catalyst, but the methanation activities of CO on Ni sites appear to be similar on the two catalysts.

On the Ni/SiO₂ catalysts, isotope studies indicated that two distinct sites for CO adsorption are not present. The ¹²CH₄ and ¹³CH₄ peaks were similar in shape and had the same peak temperature. Two aspects of these curves are of interest, however. For a wide range of interruption temperatures, the majority of the methane was ¹³CH₄, even though the surface was originally covered with ¹²CO. Apparently, ¹³CO exchanges with (displaces) ¹²CO on the Ni. A similar exchange was seen on 19% Ni/ Al_2O_3 for the ¹²CO that was on the Ni, but the ¹²CO that had spilled over onto the Al_2O_3 support did not readily exchange. Thus, the TPR spectra in Fig. 5 were obtained by taking advantage of this difference in exchange rates; the ¹²CO on the Ni was exchanged with ¹³CO without affecting the ¹²CO on the Al₂O₃ support. This difference in exchange rates is further verification that the CO on Ni/Al₂O₃ is adsorbed in two distinct chemical forms, only one of which exchanges readily with the gas phase at 300 K. This also indicates that the lowtemperature CH₄ peak is from the Ni metal, since CO on Ni of Ni/SiO₂ exchanges readily.

The other aspect of interest for the Ni/ SiO₂ catalysts is that the ¹²CH₄ signal had a slightly higher rate than the ¹³CH₄ signal at low temperatures. This occurred even though the ¹²CH₄ peak was smaller than the ¹³CH₄ peak (Fig. 9). The additional ¹²CH₄ that formed at low temperatures is most likely due to small amounts of active carbon that formed during the interrupted heating in H₂. Carbon reacts more rapidly with H₂ than does adsorbed CO (*13*). Carbon formation was not observed on Ni/ Al₂O₃ under the same conditions, apparently because the CO spilled over onto the Al₂O₃ instead of reacting to form carbon.

Concentrations of Sites

On 5.1% Ni/Al₂O₃, the amount of CO adsorbed at 385 K, in the presence of H_2 , was 5 times that adsorbed at 300 K in H₂ and 7.7 times the amount adsorbed in He at 300 K (3, 6). In contrast, for the 19% Ni/Al_2O_3 catalyst, the amount of CO adsorbed at 385 K was only 1.4 times that for adsorption at 300 K in H₂ and 1.6 times that for adsorption at 300 K in He. This increase in adsorption at 385 K is due to adsorption on Al₂O₃ sites; at 300 K in He, CO only adsorbs on Ni sites. There are several reasons for concluding that CO spills over onto the Al₂O₃ at 385 K. The most direct evidence is TPR and TPD experiments carried out on a physical mixture of Al₂O₃ and 19% Ni/Al_2O_3 (5). In that study, the amount of CO that adsorbed at 385 K on the mixture, per gram of Ni, was much higher than the amount adsorbed on the catalyst alone. That is, CO adsorbed on the Ni and spilled

over onto both the catalyst's Al_2O_3 support and the Al_2O_3 that was in physical contact with the catalyst.

The amounts of Ni and Al₂O₃ sites on the 19% Ni/Al₂O₃ catalyst were determined from the isotope labeling and interrupted TPR experiments. The amount of Ni sites was also calculated from CO adsorption in He; the total number of sites was determined from CO adsorption in H_2 at 385 K. For the 19% Ni/Al₂O₃ catalyst, excellent agreement was obtained by these methods. For 5.1% Ni, the agreement between the two methods was not as good, and the adsorption in He is considered more accurate. We estimate from previous studies (11, 12) that the 19% catalyst is probably completely reduced and the 5.1% catalyst is approximately 70% reduced. Thus, the number of Ni sites is similar per gram of reduced Ni (1121 μ mol/g Ni for 5.1% Ni/ Al₂O₃ and 1220 µmol/g Ni for 19% Ni/ Al_2O_3).

On a per gram Al_2O_3 basis, the amount of CH_4 that came from the Al_2O_3 sites was approximately the same on the two catalysts (240 and 260 μ mol/g Al₂O₃). For a surface area of 315 m^2/g , this corresponds to 5 \times 10¹³ molecules/cm². That is, the number of high-temperature CH₄ sites is independent of the Ni loading, as expected if the high-temperature CH₄ peak is from CO on Al_2O_3 . When normalized per gram of reduced Ni, the number of Al₂O₃ sites on the 5.1% catalyst was five times that on the 19% catalyst. Since the Ni dispersions for these two catalysts are similar, these results are strong supporting evidence for identifying the high-temperature CH₄ as forming from CO on the Al_2O_3 in both cases. Reduction at 975 K significantly sintered the 19% Ni/Al₂O₃ catalyst, as shown by the decreased amount of CO that adsorbed in He. The difference between CO adsorption in He at 300 K and CO adsorption in H_2 at 385 K was the same (250 μ mol/g Al₂O₃) for both reduction temperatures; thus, the number of Al₂O₃ sites was unchanged by reduction at 975 K. Similarly, for a 1% Ru/Al₂O₃ catalyst on which similar experiments were carried out (14), the number of high-temperature CH₄ sites was 245 μ mol/g Al₃O₃. This is further support that the high-temperature CH₄ results from CO on the Al₃O₃. The same Al₂O₃ was used to prepare all three catalysts.

Surface Complex

When CO and H_2 were coadsorbed at 385 K on a 5.1% Ni/Al₂O₃ catalyst, H_2 and CO desorbed simultaneously during TPD in a 3:1 ratio of H to CO. This simultaneous desorption was attributed to the decomposition of a H–CO surface complex that was on the Al₂O₃ surface (4). The complex appeared to have the stoichiometry of a methoxy species.

For the 19% Ni/Al₂O₃ catalyst, the TPD of H₂ and CO coadsorbed at 385 K was qualitatively similar to that for the 5.1% Ni/Al_2O_3 catalyst. The H₂ and CO desorbed simultaneously, with peaks centered at 500 K, but the H: CO ratio for the simultaneous peaks was larger than 3. The similarity in the H₂ and CO peak temperatures indicates the existence of a H-CO surface complex. In contrast to the 5.1% Ni/Al₂O₃ catalyst, much more CO₂ formed on the 19% Ni/ Al_2O_3 catalyst. The CO_2/CO ratio for the 5.1% Ni/Al₂O₃ catalyst was 0.10–0.15, but this ratio was 0.40–0.45 for the 19% Ni/ Al₂O₃ catalyst. Moreover, for the 19% Ni/ Al_2O_3 catalyst, a much larger fraction of the CO is on the Ni sites than for the 5.1% Ni/Al₂O₃ catalyst. Also, determination of how much H_2 is associated with CO on Ni was not made. Thus, identification of the stoichiometry of the complex on the 19% Ni/Al_2O_3 catalyst is not possible without additional studies, but analogy to the 5.1% Ni/Al_2O_3 indicates that the complex may be a CH₃O species.

When CO was adsorbed at 300 K in H_2 (following cooling in He), the complex did not form, and thus much less CO adsorbed. The activated adsorption of H_2 that was necessary for complex formation occurred between 300 and 385 K. Weatherbee and Bartholomew (15) reported that more H_2 adsorbed on a 14% Ni/Al₂O₃ catalyst at 373 K than at 323 K. When our catalyst was cooled from 775 K, a new state, due to additional activated adsorption of H_2 , was also seen (Fig. 7). This desorption was not accompanied by simultaneous desorption of CO, however, and apparently this H_2 was not adsorbed as part of a complex.

A H-CO complex did not form on the two Ni/SiO₂ catalysts at 300 or 385 K; no indication of coordination between CO and H₂ desorption was seen. Thus, a H-CO complex does not form by spillover of CO onto SiO₂ under these conditions. The rate of complex formation on a Ni/TiO₂ catalyst (*16*) was less than one tenth of the rate on Ni/Al₂O₃; either the rate on Ni/SiO₂ is even lower or a complex does not form on the SiO₂ surface.

Transfer between Sites

The difference in the amounts adsorbed in He and in H_2 at 300 K indicates how much CO transfers to the Al₂O₃ surface at 300 K, due to the presence of activated H_2 adsorption. For the 19% catalyst, 35 μ mol CO/g Al_2O_3 transferred; for the 5.1% catalyst, half this amount transferred. However, since almost four times as much CO adsorbs (per g Al₂O₃) on the 19% Ni/ Al_2O_3 at 300 K, a smaller fraction of the adsorbed CO transfers to the support of the 19% Ni/Al₂O₃ catalyst. For both catalysts this is a small fraction of the total amount of CO that can transfer onto the Al_2O_3 (250) μ mol/g Al₂O₃). Thus, the rates of transfer appear comparable for different Ni loadings and transfer is probably limited by the amount of activated H₂ adsorbed during cooling.

During TPR, the formation of CH_4 from the CO adsorbed on Al_2O_3 appears limited by the rate of decomposition of the H–CO complex, since the peak temperatures for the high-temperature CH_4 peak and for the simultaneous H_2 and CO desorption in TPD are similar for each Ni/Al₂O₃ catalyst. Since the complex decomposes faster on the 19% Ni/Al₂O₃ than on the 5.1% Ni/ Al₂O₃ catalyst, the decomposition rate does not appear to be limited by the Al₂O₃, but by the Ni concentration. This result implies that the complex decomposes on the Ni and perhaps its decomposition is limited by surface diffusion to the Ni. Indeed, for a 0.7% Ni/Al₂O₃ catalyst, the peak temperature for the high-temperature CH₄ peak was much higher, 680 K (6). For reduction at 975 K, the CH₄ peak from the complex formed at higher temperature; catalyst sintering reduced the Ni surface area and thus the catalyst behaved like a lower loading catalyst.

CONCLUSIONS

Isotope labeling combined with temperature-programmed reaction shows that two distinct sites for methanation are present on a 19% Ni/Al₂O₃ catalyst. Reduced Ni is the more active of the two sites. At elevated temperature in the presence of H_2 , CO spills over onto the Al₂O₃ support. This adsorbed CO, which is present as a H-CO complex, is hydrogenated at a slower rate than is the CO on Ni. The complex decomposes at a faster rate as Ni loading is increased; the complex apparently decomposes on the Ni surface, and the decomposition rate may be limited by diffusion of the complex. The rate of formation of the complex appears limited by activated H₂ adsorption that takes place at 385 K or below. At saturation, the complex concentration is 250 μ mol/g Al₂O₃ (5 × 10¹³ molecules/cm²), independent of Ni loading; this confirms that the complex is on the Al₂O₃ surface. A complex does not form on Ni/ SiO_2 catalysts at the same conditions that one forms on Ni/Al₂O₃ catalysts.

ACKNOWLEDGMENT

We gratefully acknowledge support by the National Science Foundation, Grant CBT8616494.

REFERENCES

1. Kester, K. B., and Falconer, J. L., J. Catal. 89, 380 (1984).

- Kester, K. B., Zagli, E., and Falconer, J. L., Appl. Catal. 22, 311 (1986).
- Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988).
- Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Catal. 115, 24 (1989).
- 5. Sen, B., Mao, T. F., and Falconer, J. L., in preparation.
- Bailey, K. M., Chai, G-Y, and Falconer, J. L., "Proceedings, 9th International Congress on Catalysis, Calgary, 1988" (M. J. Phillips and M. Ternan, Eds.). The Chemical Institute of Canada, Ottawa.
- Huang, Y. J., Schwarz, J. A., Diehl, J. R., and Baltrus, J. P., *Appl. Catal.* 37, 229 (1988).
- Bailey, K. M., Ph.D. thesis, University of Colorado, Boulder, 1988.

- Falconer, J. L., and Schwarz, J. A., Catal. Rev. Sci. Eng. 25, 141 (1983).
- Swift, H. E., Lutinski, F. E., and Kehl, W. L., J. Phys. Chem. 69, 3268 (1965).
- Machocki, A., and Barcicki, J., Chem. Stosowana 26, 2 (1982).
- Bartholomew, C. H., Pannell, R. B., Butler, J. L., and Mustard, D. G., *Ind. Eng. Chem. Prod. Res. Dev.* 20, 296 (1981).
- Ozdogan, S. Z., Gochis, P. D., and Falconer, J. L., J. Catal. 83, 257 (1983).
- 14. Sen, B., and Falconer, J. L., J. Catal. 113, 444 (1988).
- Weatherbee, G. D., and Bartholomew, C. H., J. Catal. 87, 55 (1984).
- 16. Sen, B., and Falconer, J. L., to be submitted.